

VRF MW HYBRID SYSTÈME POMPE À CHALEUR

Chauffage, climatisation et eau chaude sanitaire, même avec récupération de

stop aux systèmes traditionnels

MW HYBRID (système VRF + module hydronique) est une combinaison qui remplace un système traditionnel composé de deux systèmes distincts (climatisation + chaudière traditionnelle).

eau chaude gratuite

En mode climatisation, la chaleur est récupérée pour produire de l'eau chaude sanitaire **gratuite**.

système hybride

MW HYBRID est né de l'union innovante de deux technologies :

- **1**. Technologie à expansion directe, rafraîchit ou chauffe les pièces grâce aux unités intérieures MW HYBRID.
- 2. Technologie hydronique, le chauffage se fait grâce au module hydronique qui alimente les systèmes à basse température tels que les panneaux radiants et les radiateurs à haut rendement. Le système MW HYBRID est capable de produire de l'eau chaude sanitaire.

Air - Air

Climatisation et chauffage à expansion directe.

Le mode air-air avec l'utilisation d'unités intérieures à expansion directe assure l'obtention rapide du confort souhaité.

Air - Eau

Chauffage et production d'eau chaude sanitaire avec hydromodule, climatisation avec unités à expansion directe (installation obligatoire).

•••••••

CHAUFFAGE AU SOL

RADIATEURS À HAUTE EFFICACITÉ

EAU CHAUDE SANITAIRE

Dans cette configuration, le système MW HYBRID peut être utilisé en hiver pour la production d'eau chaude sanitaire et pour le chauffage des environnements intérieurs via des panneaux radiants (ou radiateurs à haut rendement). En été, lorsque les unités intérieures à expansion directe fonctionnent en mode climatisation, il est possible de produire de l'eau chaude sanitaire en récupérant la chaleur qui serait autrement perdue par l'unité extérieure.

Air - Air et Air - Eau

Utilisation combinée des deux technologies.

CHAUFFAGE AU SOL

CHAUFFAGE OU CLIMATISATION

EAU CHAUDE SANITAIRE

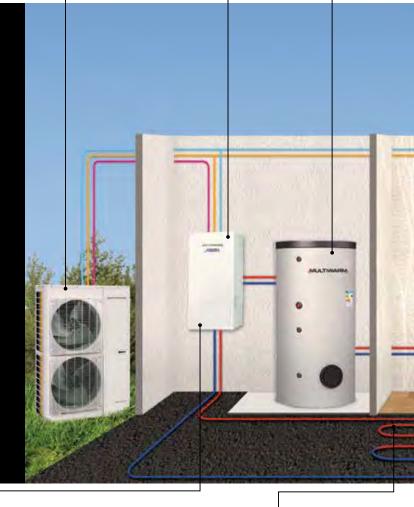
MW HYBRID chauffe à la fois en utilisant des unités à expansion directe internes et en alimentant un système de panneaux radiants (ou des radiateurs à haut rendement) et produit de l'eau chaude sanitaire. La priorité de fonctionnement est sélectionnable par l'utilisateur.

LES COMPOSANTS DE MW HYBRID

UNITÉS EXTÉRIEURES

Ces unités permettent de récupérer, en période estivale, la chaleur de condensation qui serait normalement dissipée dans l'environnement. Cette chaleur est dirigée vers l'hydromodule, qui produit gratuitement de l'eau chaude sanitaire.

MODULE HYDRONIQUE


Échangeur de chaleur pour la production d'eau chaude sanitaire et d'eau pour systèmes de chauffage à basse température.

confort à 360° toute l'année

MW HYBRID garantit une solution complète pour la climatisation de tous les environnements tout au long de l'année.

C'est un système économique, qui réduit les émissions de CO2, est capable de garantir le confort intérieur et de produire de l'eau chaude sanitaire.

MW HYBRID utilise des unités extérieures monophasées et triphasées, de différentes puissances, auxquelles peuvent être connectées jusqu'à 13 unités intérieures et 2 modules hydroniques.

CONTRÔLE DU MODULE HYDRONIQUE

Tableau de commande multifonction pour la gestion de la partie hydronique (télécommande).

PANNEAUX RADIANTS

Ils chauffent la maison avec un gradient thermique agréable (non fournis par MULTIWARM).

LES COMPOSANTS DE MW HYBRID

RÉSERVOIR POUR L'EAU CHAUDE SANITAIRE

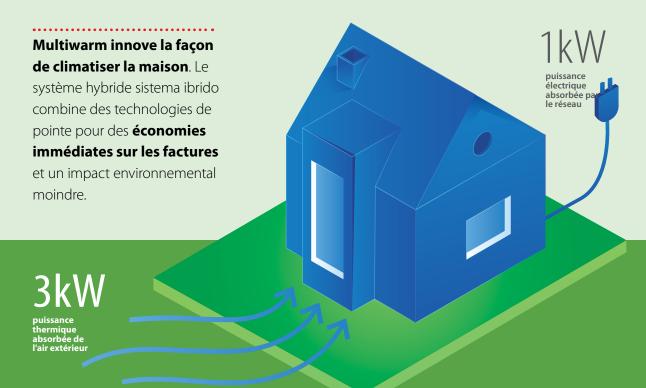
Accumule et alimente l'eau chaude sanitaire produite par le système.

UNITÉS INTÉRIEURES À EXPANSION DIRECTE

Modèles de type mural, cassette, gainable, console, console/plafonnier, console encastrable.

TABLEAU DE CONTRÔLE

Panneau de contrôle pour la gestion de l'expansion directe et hydronique avec capteur de température intégré.



THERMOSTAT D'AMBIANCE

Possibilité d'intégration avec thermostat d'ambiance fourni par des tiers (non fourni par MULTIWARM).

ÉCONOMIES D'ÉNERGIE

MW HYBRID fonctionne avec de l'énergie renouvelable gratuite!

Étant un système de pompe à chaleur hautement économe en énergie, MW HYBRID prélève 75 à 80 % de l'énergie qu'il utilise dans l'air extérieur.

Pour chaque kW d'électricité consommé, 3 kW sont prélevés gratuitement dans l'air extérieur.

La puissance thermique libérée dans l'environnement est 4 fois supérieure à la puissance électrique absorbée.

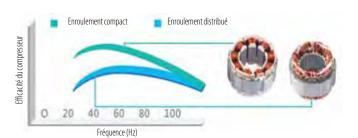
MW HYBRID ne gaspille pas d'énergie mais l'utilise pour chauffer l'eau, comment ?

Pendant la saison estivale, alors que les unités intérieures fonctionnent en mode climatisation, la chaleur de condensation n'est pas dispersée dans l'environnement extérieur; il est récupéré à l'intérieur de l'hydromodule pour produire de l'eau chaude sanitaire GRATUITE.

ECS GRATUITE

EN ÉTÉ AVEC RÉCUPÉRATION DE CHALEUR PAR CONDENSATION

TECHNOLOGIE TOTAL INVERTER



Compresseurs et ventilateurs DC Inverter

AVANTAGES

- Maximiser les performances d'efficacité.
- > Réduction de la consommation énergétique et des coûts d'exploitation.

INSTALLATION ET ENTRETIEN FACILES

Adressage automatique des unités

Les unités intérieures et extérieures sont adressées automatiquement et non manuellement. L'unité extérieure, grâce à un réglage particulier, reconnaît les différentes unités intérieures présentes dans le système, réduisant ainsi les risques d'erreur possibles.

Système de communication can-bus

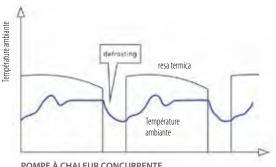
MW HYBRID adopte un système de communication plus rapide, plus fiable et anti-interférence (entre l'unité extérieure, les unités intérieures et l'hydromodule).

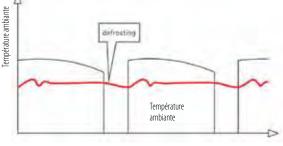
Entretien

La maintenance du MW HYBRID est simple grâce aux 3 fonctions d'autodiagnostic:

- 1. détection automatique du type d'erreur de l'unité;
- 2. démarrage automatique de l'opération de diagnostic;
- 3. détection d'anomalies en temps réel.

Confort ultra-rapide


En utilisant simultanément la technologie à expansion directe et le chauffage au sol, vous pouvez obtenir un confort hivernal maximal en chauffant les pièces rapidement et économiquement.


Effet « chauffage continu »

MW HYBRID est équipé d'un dégivrage intelligent car il utilise, lorsque cela est possible, l'énergie thermique du réservoir d'eau chaude sanitaire.

Cela génère l'effet de «chauffage continu» avec les avantages suivants :

- > la température ambiante est stable;
- il n'y a pas de courant d'air (effet skin).

POMPE À CHALEUR CONCURRENTE

POMPE À CHALEUR MW HYBRID

Silence

Le système MW HYBRID est capable d'établir quand activer la fonction « mode silencieux nocturne » (en fonction de la température extérieure et de la charge interne): l'unité extérieure fonctionne avec des emissions sonores inférieures à 45 dB(A).

Le mode silencieux peut être activé dans les modes ci-contre:

AUTOMATIQUE

Dans des conditions de faible charge, la nuit, le système active automatiquement le mode silencieux.

MANUEL

Dans les applications particulières où un faible bruit est requis, le système peut forcer l'unité à fonctionner à des vitesses réduites. contenant ainsi les émissions sonores.

PRODUCTION D'FCS

Plage d'utilisation

- > Fonction Eco (conseillé): température de l'eau max 48° C.
- > Fonction Power: température de l'eau max 55° C.
- > Fonction Fast Power: température d'eau requise supérieure à 55° C (par intégration avec résistance électrique).

Applications spéciales

- > **Sunflower**: l'eau chaude sanitaire est chauffée pendant les heures les plus chaudes de la journée (en fonction de la température extérieure la plus élevée enregistrée la veille) pour réaliser un maximum d'économies d'énergie.
- **Auto**: définit automatiquement la température de consigne en fonction de la température extérieure.
- > Sterilize: cycle anti-légionellose 65-70° C.
- > **Rapid**: démarre le compresseur et la résistance électrique en même temps pour chauffer, en peu de temps, l'eau à usage sanitaire ou pour le chauffage hydronique.

TEMPÉRATURE DE L'EAU

48°C en fonction ECO

Fonction Sterilize

Grâce au module hydronique du système MW HYBRID, avec une fonction simple, réglable depuis la commande filaire, il est possible de programmer des cycles de stérilisation à intervalles réguliers (de 1 à 60 jours, il est recommandé d'effectuer au moins un cycle par mois) ou d'effectuer un seul cycle.

Avec un choc thermique, des températures comprises entre 60 et 70°C sont atteintes, ce qui garantit l'élimination de toutes les bactéries.

LA GAMMA DU SYSTÈME VRF MW HYBRID

UNITÉS EXTÉRIEURES

12,10 kW	14,00 kW	16,00 kW
monophasée	monophasée	monophasée
M-VH-OV-120-NG	M-VH-OV-140-NG	M-VH-OV-160-NG

22,40 kW	28,00 kW
triphasée	triphasée
M-VH-OV-224-SG	M-VH-OV-280-SG
IVI-VIT-UV-224-3G	IVI-VIT-UV-20U-3G

MODULE HYDRONIQUE

16,00 kW
monophasé
M-VH-HM-160-NG

RÉSERVOIRS

200 Litres	300 Litres	500 Litres
WT-XL-DW1-200 C-1	WT-XL-DW1-300 C-1	WT-XL-DW1-500 C-1

REMARQUE: des réservoirs tiers peuvent également être utilisés.

UNITÉS INTÉRIEURES

Unités intérieures applicables pour le fonctionnement air/air à la page. 101

MW HYBRID EST COMPOSÉ DE 5 UNITÉS EXTÉRIEURES AUXQUELLES L'ON PEUT RACCORDER JUSQU'À UN MAX. DE 13 UNITÉS INTÉRIEURES ET 2 MODULES HYDRONIQUE, SELON LA CAPACITÉ DE L'UNITÉ EXTÉRIEURE

3 MODÈLES MONOPHASÉS

Les unités extérieures monophasées à expulsion d'air horizontale sont disponibles dans les modèles 12,10 kW, 14,00 kW et 16,00 kW. Tous les compresseurs des modèles monophasés sont des Rotary DC Inverter.

2 MODÈLES TRIPHASÉS

Les unités extérieures triphasées à expulsion d'air verticale sont disponibles dans les modèles 22,40 kW et 28,00 kW. Tous les compresseurs des modèles triphasés sont des Scroll DC Inverter.

PUISSANCE ET NOMBRE DES UNITÉS INTÉRIEURES RACCORDABLES

Modèle	Puissance Min~Max des U.I. raccordables	Nb. Min~Max des U.I. raccordables	Nb. Max des modules hydroniques raccordables	Conto Termico 2.0*	Ecobonus*
M-VH-OV-120-NG	80~110%	1~6	1	/	/
M-VH-OV-140-NG	80~110%	1~7	1	/	/
M-VH-OV-160-NG	80~110%	1~8	1	V	/
M-VH-OV-224-SG	80~110%	1~10	2	/	
M-VH-OV-280-SG	80~110%	1~13	2	/	/

^{*} Uniquement pour le marché italien.

COMPACITÉ MAXIMALE POUR TOUTES LES UNITÉS EXTÉRIEURES

12,10 - 14,00 - 16,00 kW

L 900 x H 1345 x P 340 (mm)

22,40 - 28,00 kW

L 1340 x H 1605 x P 765 (mm)

Plages de fonctionnement des unités extérieures

Le système **VRF MW HYBRID** dispose d'une très large plage de fonctionnement de température externe, garantissant une nouvelle flexibilité de conception.

jusqu'à

500

en froid

MODE CLIMATISATION

Température extérieure de -5° à 50° C

MODE CHAUFFAGE HYDRONIQUE

Température extérieure de -15° à 21° C Température de l'eau de 25° à 52° C

MODE CHAUFFAGE

Température extérieure de -15° à 24° C

PRODUCTION D'EAU CHAUDE SANITAIRE

Température extérieure de -15° à 43° C Température de l'eau de 35° à 55° C

UNITÉS EXTÉRIEURES

5 CAPACITÉS

12,10~28,00 kW

R410A

Gaz réfrigérant

Les compresseurs DC Inverter garantissent une fiabilité totale grâce à une efficacité énergétique élevée et au silence. De plus, ils permettent une réduction des vibrations et un contrôle précis de la fréquence de fonctionnement.

M-VH-OV-224-SG M-VH-OV-280-SG

M-VH-OV-120-NG M-VH-OV-140-NG M-VH-OV-160-NG

Modèle			M-VH-OV-120-NG	M-VH-OV-140-NG	M-VH-OV-160-NG	M-VH-OV-224-SG	M-VH-OV-280-SG				
Données nominales											
Capacité nominale		kW	12,10	14,00	16,00	22,40	28,00				
Puissance nominale absorbée			3,05	3,98	4,85	5,35	7,70				
Coefficient d'efficacité énergétique (nominale)		EER1	3,97	3,52	3,30	4,19	3,64				
Capacité nominale		kW	14,00	16,50	18,50	25,00	31,50				
Puissance nominale absorbée	Chauffage	kW	3,30	4,10	4,67	5,80	7,60				
Coefficient de perfromance énergétique (nominale)		COP1	4,24	4,02	3,96	4,31	4,14				
Données saisonnières											
Indice d'efficacité énergétique saisonnier	Climatisation	SEER2	8,08	7,79	7,73	8,46	7,58				
illuice a efficacité effetgetique saisonnier	Chauffage	SCOP2	4,17	4,11	4,04	5,50	5,58				
Données électriques											
Alimentation électrique		Ph-V-Hz			1-220~240V-50Hz						
Courant maximal		A	27,00	31,00	33,00	16,10	20,90				
Données du circuit frigorifique											
Réfrigérant3		type (GWP)			R410A (2088)						
Quantité de précharge en réfrigérant4 (tonnes d'é	quivalent CO2)	Kg	5 (10,4)	5 (10,4)	5 (10,4)	10,5 (21,9)	11 (23)				
Compresseur		nb. / type		1 / Rotativo DC Inverter		1 / Scroll DC Inverter					
	Liquide	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")				
Diamètre des tuyauteries	Gaz	mm (inch)	15,9 (5/8")	15,9 (5/8")	19,05 (3/4")	19,05 (3/4")	22,2 (7/8")				
	Gaz haute pression	mm (inch)	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")				
Spécifications du produit											
Dimensions	LxHxP	mm	900x1345x340	900x1345x340	900x1345x340 113	1340x1605x765	1340x1605x765				
Poids net		Kg		113 113		295	295				
Niveau de puissance sonore	max	dB(A)	72	72	72	81	81				
Niveau de pression sonore à 1 m	max	dB(A)	55	56	58	57	58				
Volume d'air traité	max	m3/h	6000	6300	6600	14000	14000				
	Climatisation	°C	-5~50								
	Chauffage de l'air	°C			-15~24						
Plage de fonctionnement (température	Chauffage hydronique Eau chaude sanitaire (ECS)	°C			-15~21						
extérieure)	°C			-15~43							
	°C			-5~43							
	Chauffage de l'air + ECS	°C			-15~24						
Plage de fonctionnement du circuit de l'eau	Chauffage hydronique	°C			25~52						
	Eau chaude sanitaire (ECS)	°C		35~55							
Unités intérieures air/air raccordables (min - r	nax) ⁵	nb.	1~6	1~7	1~8	1~10	1~13				
Modules hydroniques raccordables (max)		nb.	1	1	1	2	2				
Capacité des unités intérieures air/air raccorda	ables	%			80~110						

^{1.} Valeur mesurée selon la norme harmonisée EN14511.

5. Au moins 1 unité intérieure à expansion directe est obligatoire.

^{1.} Valeur intesulees section a notified in another lattinusee (LTH-311).

2. Règlement UE n° 206/2012 – Valeur mesurée selon la norme harmonisée EN14825.

3. La perte de réfrigérant contribue au changement climatique. Lorsqu'ils sont rejetés dans l'atmosphère, les réfrigérants ayant un potentiel de réchauffement climatique (PRG) plus faible contribuent moins au réchauffement climatique que ceux ayant un PRG plus élevé. Cet appareil contient un fluide frigorigène dont le PRG est de 2088. Si 1 kg de ce fluide frigorigène était rejeté dans l'atmosphère, l'impact sur le réchauffement climatique serait donc 2088 fois supérieur à celui de 1 kg de CO2, sur une période de 100 ans. En aucun cas l'utilisateur ne doit tenter d'intervenir sur le circuit frigorifique ou de démonter le produit. En cas de besoin, contactez toujours du personnel qualifié.

4. Pour calculer la charge de réfrigérant supplémentaire, reportez-vous aux étiquettes situées à l'intérieur et à l'extérieur de l'unité.

MODULE HYDRONIQUE

HAUTE EFFICACITÉ

A+ en combinaison avec chaque capacité d'unité extérieure

PRODUCTION ECS

105 L/h nominaux 75-140 (min.-max. L/h) extérieure

PUISSANCE THERMIQUE ECS

4,50 kW nominaux pour production ECS 3,60-16,00 (min.-max. kW)

PUISSANCE THERMIQUE CHAUFFAGE

16,00 kW pour chauffage hydronique

CONTRÔLES

commande à fil incluse

M-VH-HM-160-NG

Modèle			M-VH-HM-160-NG
Consideration	Eau chaude sanitaire1	kW	4,50 (3,60~16,00)
Capacité nominale	Chauffage hydronique	kW	16,00
Température max. sortie de l'eau		°C	55
Données électriques			
Alimentation électrique		Ph-V-Hz	1-220~240-50Hz
Puissance intégration électrique (2 étapes)		kW	1,50+1,50
Données hydrauliques			
Échangeur de chaleur eau/freon		type	À plaques, brasé
	Marque	-	Wilo
Pompe de circulation	Débit de l'eau	m³/h	1,7
	Pression statique	m	6
Raccordements pour l'eau	Diamètre	mm	25
Naccordenients pour r eau	Filetage	Pouces	G1
Vase d'expansion	Volume	L	10
<u>'</u>	Précharge	bar	1
Données du circuit frigorifique			
	Liquide		9,52 (3/8")
Diamètre des tuyauteries	Gas	_mm (pouce)	15,9 (5/8")
	Gaz haute pression		12,7 (1/2")
Spécifications du produit			
Dimensions	LxHxP	mm	500x919x328
Poids net		kg	56

Conditions : air extérieur 20°C BS (15°C BH), entrée d'eau 15°C / sortie 52°C.

Contrôle du module hydronique

Le module hydronique est équipé d'une commande permettant de gérer le chauffage hydronique et offre diverses fonctions de gestion de l'eau chaude sanitaire.

QUELQUES FONCTIONS

- **Sunflower**: l'eau chaude sanitaire est chauffée pendant les heures les plus chaudes de la journée (en fonction de la température extérieure la plus élevée enregistrée la veille) pour réaliser un maximum d'économies d'énergie.
- **Auto**: définit automatiquement la température de consigne en fonction de la température extérieure.
- > Sterilize: cycle anti-légionellose 65-70° C.
- > **Rapid**: met en marche le compresseur et la résistance électrique du réservoir en même temps pour chauffer, en peu de temps, l'eau destinée à un usage sanitaire ou pour le chauffage hydronique.

RÉSERVOIRS D'ACCUMULATION D'ECS

Réservoirs de stockage d'eau chaude sanitaire

MULTIWARM propose une gamme complète de réservoirs à serpentin fixe pour la production d'eau chaude sanitaire

La structure en acier revêtu de Polywarm et l'anode en magnésium incluse, proportionnelle au volume à protéger, assurent une haute protection contre la corrosion.

Dans les modèles de 200, 300 et 500 litres, l'isolation, non amovible, est réalisée en polyuréthane expansé (50 mm d'épaisseur).

Tous les réservoirs sont revêtus extérieurement de PVC flexible, ce qui assure une excellente isolation, réduisant au minimum les pertes de chaleur.

WT-XL-DW1-200 C-1 WT-XL-DW1-300 C-1 WT-XL-DW1-500 C-1

Modèle			WT-XL-DW1-200 C-1	WT-XL-DW1-300 C-1	WT-XL-DW1-500 C-1			
Volume net du réservoir		litres	189	189 291				
Matériau du réservoir		-		Acier revêtu de Polywarm				
Puissance de la résistance électrique (er	n option)	kW		1,50				
Surface de l'échangeur		m2	2,00	3,40	5,40			
Épaisseur de l'isolant		mm		50				
Température max. de l'eau		°C	90					
Dimensions	Diamètre	mm	550	650	750			
Dimensions	Hauteur	mm	1440	1500	1800			
Poids net		kg	96	96 130				
	Entrée de l'eau chaude sanitaire	pouces	3/4"	1"	1"			
Descardensente	Sortie de l'eau chaude sanitaire	pouces	1″1/4	1″1/4	1″1/4			
Raccordements	Recirculation	pouces	3/4"	1"	1"			
	Évacuation	pouces	1″1/4	1"1/4	1″1/4			
Classe d'efficacité énergètique *			В	В	C			

^{*} ERP ready 2017 (règlement UE n.814/2013).

RÉSE	RVOIR	ÉCHANGEUR			
Pression maximale	Température max.	Pression maximale	Température max.		
10 bar	90° C	12 bar	110°C		

CARACTÉRISTIQUES DU RÉSERVOIR

UTILISATION

Production et stockage d'eau chaude sanitaire (ECS). Toutes les connexions hydrauliques à l'arrière, les connexions avant et la bride sont alignées pour une installation rapide et facile.

> MATÉRIAUX ET FINITIONS

Acier revêtu de Polywarm® (certifications ECS - SSICA - EN 16421) adapté à l'eau potable conformément au décret ministériel n° 174 du 06.04.04.

> ÉCHANGEUR DE CHALEUR

Échangeur de chaleur fixe en acier revêtu de Polywarm®.

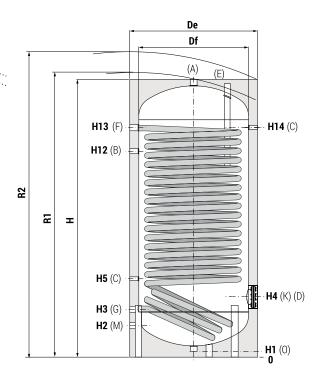
ISOLATION RIGIDE

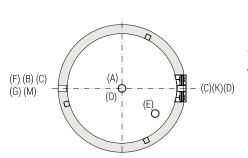
Polyuréthane expansé hautement isolant.

> PROTECTION CATHODIQUE

Anode en magnésium.

ÉVACUATION


Évacuation par le manchon en bas.


> CONTRE-BRIDE - JOINTS

Joints en caoutchouc de silicone de qualité alimentaire (décret ministériel n° 174 de 2004) ; résistance de fonctionnement jusqu'à 200° C.

Tête en acier au carbone avec traitement Polywarm® et disposition pour résistance électrique.

SCHÉMAS ET DIMENSIONS DU RÉSERVOIR

Madàla	Volume	Poids	Df	Н	De	R2	H1	H2	Н3	H4	H5	H12	H13	H14	K	М	В	А	D
Modèle	[lt]	[Kg]							[mm]							Rac	cordements	Gaz F (poud	ces)
200	188,8	96	//	1440	550	1560	71	215	285	325	405	1055	1190	1190	Øi120/Øe180	3/4"	3/4"	1" 1/4"	1" 1/2"
300	290,5	130	//	1500	650	1650	71	241	321	381	431	1091	1211	1211	Øi120/Øe180	1"	1"	1" 1/4"	1" 1/2"
500	497,4	174	//	1800	750	1960	71	266	346	411	466	1326	1486	1486	Øi120/Øe180	1″	1"	1" 1/4"	1" 1/2"

RACCORDEMENTS

Α	Sortie de l'eau chaude sanitaire	G	Sortie du circuit primaire 1" 1/4" Gaz F
В	Raccord de recirculation	K	Bride d'inspection
C	Connexion pour instrumentation 1/2" Gaz F	М	Entrée de l'eau sanitaire
D	Connexion pour intégration électrique	N	Connexion pour instrumentation 1/2" Gaz F
E	Connexion pour anode de magnésium 1" 1/4" Gaz F	0	Évacuation 1" 1/4" Gaz F
F	Entrée du circuit primaire 1" 1/4" Gaz F		

ACCESSOIRES EN OPTION

- > Résistance électrique intégrative de 1,5 kW (WT-EH-15-C).
- > Anode en titane pour réservoirs de 200 et 300 litres (WT-AT-2-4-C).
- > Anode en titane pour réservoirs de 500 litres (WT-AT-5-C).

REMARQUE : des accessoires tiers peuvent également être utilisés.